ISSN 1600-5368

M. Alagar,^a R. V. Krishnakumar,^b M. Subha Nandhini^c and S. Natarajan^c*

^aDepartment of Physics, Ayya Nadar Janaki Ammal College, Sivakasi 626 123, India, ^bDepartment of Physics, Thiagarajar College, Madurai 625 009, India, and ^cDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India

Correspondence e-mail: xray@mrna.tn.nic.in

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.035 wR factor = 0.106 Data-to-parameter ratio = 7.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

L-Alaninium maleate

In the title compound, $C_3H_8NO_2^+ \cdot C_4H_3O_4^-$, the alanine molecule exists in the cationic form and the maleic acid molecule in the mono-ionized state. A head-to-tail hydrogen bond is observed between the amino acid molecules. There are no direct hydrogen-bonded interactions between the semi-maleate anions. The overall aggregation pattern is similar to that observed in the L-alanine-oxalic acid complex.

Comment

X-ray studies on crystalline complexes of amino acids with simple carboxylic acids, which are believed to have existed in the prebiotic earth (Miller & Orgel, 1974; Kvenvolden *et al.*, 1971), are expected to throw light on the nature of intermolecular interactions and biomolecular aggregation patterns (Vijayan, 1988; Prasad & Vijayan, 1993). The crystal structures of complexes of oxalic acid with glycine (Subha Nandhini *et al.*, 2001*a*), sarcosine (Krishnakumar *et al.*, 1999), L-alanine (Subha Nandhini *et al.*, 2001*b*) and DL-alanine (Subha Nandhini *et al.*, 2001*c*) were elucidated recently. The present report on the crystal structure of L-alaninium maleate is part of a series of investigations on amino acid–carboxylic acid complexes.

Fig. 1 shows the molecular structure with the numbering scheme. The alanine molecule exists in the cationic form with a positively charged amino group and an uncharged carboxylic acid group. The maleic acid molecule exists in the monoionized state (*i.e.* as a semimaleate). A common feature observed among the crystal structures of L-alaninium oxalate, DL-alaninium oxalate and (I) is that their cell dimensions are very similar. However, the crystals of the racemate are monoclinic and those of the isomers are orthorhombic. The semimaleate ion is essentially planar and the intramolecular hydrogen bond between atoms O3 and O5 is found to be asymmetric, as in the crystal structure of maleic acid (James & Williams, 1974).

Fig. 2 shows the packing of molecules of (I) viewed down the a axis. The alaninium and semimaleate ions form alternate columns parallel to the b axis. There are no direct hydrogenbond interactions between the semimaleate anions. They link the alaninium ions into a linear chain running parallel to the Received 16 July 2001 Accepted 6 August 2001 Online 10 August 2001

Figure 1

The molecular structure of (I) with atom-numbering scheme and 50% probability displacement ellipsoids.

Figure 2 Packing diagram of the molecules of (I) viewed down the *a* axis.

longer c axis. The overall aggregation pattern is similar to that observed in the L-alanine-oxalic acid complex. A comparison of the crystal structure of (I) with those of complexes of maleic acid with glycine (Rajagopal *et al.*, 2001), DL- and L-arginine (Ravishankar *et al.*, 1998) and L-histidine and L-lysine (Pratap *et al.*, 2000) shows that the intrinsic aggregation properties of individual molecules in a particular amino acid-carboxylic acid complex seem to largely depend on the nature of the amino acid.

Experimental

Colorless single crystals of (I) were grown as transparent needles, from a saturated aqueous solution containing L-alanine and maleic acid in a 1:1 stoichiometric ratio.

Crystal data

$C_2H_2O_2N^+ \cdot C_4H_2O_4^-$	$D_{\rm m}$ measured by flotation in a liquid
$M_r = 205.17$	mixture of xylene and bromoform
Orthorhombic, $P2_12_12_1$	Cu Ka radiation
a = 5.5873 (11) Å	Cell parameters from 25
b = 7.3864 (17) Å	reflections
c = 23.688 (3) Å	$ heta=18 extsf{}27^\circ$
V = 977.6 (3) Å ³	$\mu = 1.08 \text{ mm}^{-1}$
Z = 4	T = 293 (2) K
$D_x = 1.394 \text{ Mg m}^{-3}$	Needle, colorless
$D_m = 1.40 (2) \text{ Mg m}^{-3}$	$0.30 \times 0.20 \times 0.10 \text{ mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer ω -2 θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\rm min} = 0.76, T_{\rm max} = 0.90$ 1024 measured reflections 1024 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.106$ S = 1.101024 reflections 130 parameters H-atom parameters constrained

Table 1Selected geometric parameters (Å, $^{\circ}$).

O1-C1	1.303 (3)	N1-C2	1.485 (3)
O2-C1	1.209 (3)	C1-C2	1.509 (3)
O3-C4	1.267 (3)	C2-C3	1.527 (3)
O4-C4	1.230 (3)	C4-C5	1.474 (3)
O5-C7	1.281 (3)	C5-C6	1.326 (4)
O6-C7	1.228 (3)	C6-C7	1.475 (4)
02 - C1 - O1	1248(2)	04 - C4 - C5	1176(2)
02 - C1 - C2	12.3(2)	03 - C4 - C5	120.8(2)
O1-C1-C2	112.8 (2)	C6-C5-C4	130.4(2)
N1-C2-C1	108.28 (18)	C5-C6-C7	131.4 (2)
N1-C2-C3	109.2 (2)	O6-C7-O5	121.8 (2)
C1-C2-C3	110.3 (2)	O6-C7-C6	119.2 (2)
O4-C4-O3	121.6 (2)	O5-C7-C6	119.0 (2)
O2-C1-C2-N1	27.4 (3)	O3-C4-C5-C6	-1.8 (6)
O1-C1-C2-N1	-155.8(2)	C4-C5-C6-C7	-0.1(8)
O2-C1-C2-C3	-92.0(3)	C5-C6-C7-O6	-175.9(5)
O1-C1-C2-C3	84.8 (3)	C5-C6-C7-O5	3.7 (7)
O4-C4-C5-C6	178.7 (4)		

977 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 67.9^{\circ}$

 $\begin{array}{l} h=0\rightarrow 6\\ k=0\rightarrow 8 \end{array}$

 $l = 0 \rightarrow 25$

2 standard reflections

every 200 reflections intensity decay: 2%

 $w = 1/[\sigma^2(F_o^2) + (0.0739P)^2]$

Extinction correction: SHELXL97

Extinction coefficient: 0.018 (2)

+ 0.1453P] where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}_{\circ}$

 $\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1\cdots O4^{i}$	0.82	1.78	2.593 (2)	174
O3−H3···O5	0.82	1.63	2.425 (3)	164
$N1-H1A\cdots O5^{ii}$	0.89	2.00	2.887 (3)	175
$N1 - H1B \cdots O2^{iii}$	0.89	2.17	2.881 (2)	137
$N1 - H1B \cdots O4^{iv}$	0.89	2.43	2.996 (3)	122
$N1 - H1C \cdots O6^{v}$	0.89	1.96	2.828 (3)	165
$C5-H5\cdots O3^{vi}$	0.93	2.45	3.264 (3)	146
$C6-H6\cdots O5^{vi}$	0.93	2.51	3.419 (3)	165

Symmetry codes: (i) 1 + x, y, z - 1; (ii) $\frac{1}{2} - x, 1 - y, z - \frac{1}{2}$; (iii) $x - \frac{1}{2}, \frac{3}{2} - y, -z$; (iv) $\frac{1}{2} + x, \frac{3}{2} - y, 1 - z$; (v) $\frac{3}{2} - x, 1 - y, z - \frac{1}{2}$; (vi) 1 + x, y, z.

The absolute configuration of L-alaninium maleate was not established by the analysis but is known from the configuration of the starting reagents. The H atoms were placed at calculated positions and were allowed to ride on their respective parent atoms with *HFIX* instructions using *SHELXL*97 (Sheldrick, 1997) defaults.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990);

program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 1999); software used to prepare material for publication: *SHELXL*97.

SN thanks the Council of Scientific and Industrial Research (CSIR), India, for financial assistance. MA thanks the UGC for the FIP programme. The authors also thank UGC for the DRS programme and the Bio-informatics Centre, Madurai Kamaraj University, for providing the Cambridge Structural Database (Allen & Kennard, 1993).

References

- Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31–37. Enraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
- James, M. N. G & Williams, G. J. B. (1974). Acta Cryst. B30, 1249-1257.
- Kvenvolden, K. A., Lawless, J. G. & Ponnamperuma, C. (1971). Proc. Natl Acad. Sci. USA, 68, 486–490.

- Krishnakumar, R. V., Subha Nandhini, M. & Natarajan, S. (1999). Acta Cryst. C55, IUC9800063.
- Miller, S. L. & Orgel, E. L. (1974). *The Origins of Life on The Earth*, p. 83. New Jersey: Prentice-Hall.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Prasad, G. S. & Vijayan, M. (1993). Acta Cryst. B49, 348-356.
- Pratap, J. V., Ravishankar, R. & Vijayan, M. (2000). Acta Cryst. B56, 690–696. Rajagopal, K., Krishnakumar, R. V., Mostad, A. & Natarajan, S. (2001). Acta
- *Cryst.* E**57**, 0751–0753.
- Ravishankar, R., Chandra, N. R. & Vijayan, M. (1998). J. Biomol. Struct. Dyn. 15, 1093–1100.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1999). *PLATON for Windows*. Utrecht University, The Netherlands.
- Subha Nandhini, M., Krishnakumar, R. V. & Natarajan, S. (2001*a*). Acta Cryst. C**57**, 115–116.
- Subha Nandhini, M., Krishnakumar, R. V. & Natarajan, S. (2001b). Acta Cryst. E57, 0633–0635.
- Subha Nandhini, M., Krishnakumar, R. V. & Natarajan, S. (2001c). Acta Cryst. E**57**, 0666–0668.
- Vijayan, M. (1988). Prog. Biophys. Mol. Biol. 52, 71-99.